Data Management Plans for Health Sciences Research

October 10, 2024

Turning 'live captions' on and off

• On your meeting controls, click on "Show Captions"

Land Acknowledgement

We wish to acknowledge this land on which the University of Toronto operates.

For thousands of years it has been the traditional land of the Huron-Wendat, the Seneca, and the Mississaugas of the Credit.

Today, this meeting place is still the home to many Indigenous people from across Turtle Island and we are grateful to have the opportunity to work on this land.

Housekeeping

- This webinar is being recorded and transcribed
- A link to the recording and presenter slides will be sent to all participants after the session
- Please put questions into the chat, we will hold all questions until the end of the presentations

Purpose & Agenda

Bring together the University of Toronto tricampus and TAHSN health sciences research community for facilitated conversations about research data management.

Learning Objectives:

- DMP benefits and challenges
- Strategies and tools
- Strengthen DMP practices

- 10:10 10:15 am
 - DMP Basics am
- 10:15 **Presentations**
- 10:40 am **Dr. Victoria Hodgkinson**, Executive Director, Canadian Neuromuscular Disease Registry
 - **Dr. Trevor Pugh**, Professor, Department of Medical Biophysics & Senior Scientist, Princess Margaret Cancer Centre
 - **Dr. Denise Mak**, Director of Data Science & Innovation, GEMINI
- 10:40 -Panel Discussion and Q&A11:25 am

Data Management Plan (DMP) – The Basics

What

- Covers practices, processes, and strategies for data management
- A living document that should be updated

"DMPs guide researchers in articulating their plans for managing data; they do not necessarily compel researchers to manage data differently." Tri-Agency Policy

Tri-Agency Research Data Management Policy

- Identify opportunities and challenges early
- Adapt to unanticipated obstacles
- Engage partners and collaborators
- Improve research design and efficiency
- Meet funder requirements

How

Components

- Data collection
- Data security, storage, & backup
- Data preservation & sharing
- Roles & responsibilities
- Ethical, legal, commercial constrains
- Other

Tools & templates

- DMP Assistant
- <u>McMaster Data</u>
 <u>Management Plan Database</u>
- Funder-specific requirements

Panelists

Dr. Victoria Hodgkinson

Executive Director, Canadian Neuromuscular Disease Registry

Dr. Trevor Pugh Professor, Department of Medical Biophysics & Senior Scientist, Princess Margaret Cancer Centre

Dr. Denise Mak Director of Data Science & Innovation, GEMINI

Data Management Plans

Victoria Hodgkinson, PhD,

Canadian Neuromuscular Disease Registry (CNDR)

vhodgkin@ucalgary.ca

HOTCHKISS Brain Institute

The CNDR: Who We Are

A Multi-centre, National Collaborative Program

- 38 neuromuscular clinics (pediatric & adult)
- > 136 clinician investigators in network (48 core)
- Consent-based
- Clinical data abstraction (SMA, DMD, ALS, DMD, FSHD, ...)
- Currently over 6000 patients nationwide from all provinces and territories
- Broad data use by academic, not-for-profit, industry, and regulators, in Canada and internationally

TREAT-NMD Global Registry Network: SMA

J Neural (2014) 261:152-163 DOI 10.1007/s00415-013-7154-1

ORIGINAL COMMUNICATION

Mapping the differences in care for 5,000 Spinal Muscular Atrophy patients, a survey of 24 national registries in North America, Australasia and Europe Global Collaborative Data Collection for Real World Evidence in Spinal Muscular Atrophy Canada

Hodgkinson V., et al.

Canadian Registry For Amyloidosis Research

BetterLife FSHD

mit@canada

AcroNEXT Global Acromegaly Registry

HEADS REGISTRY

HEADACHE, EAR, AUDITORY, DIZZINESS, SINUS REGISTRY

Canadian Acromegaly Registry

Real-World Evidence for Canadian Neuromuscular Disease: Establishing a Framework for National Integration of Patient Reported Outcomes, Clinical Registry Data, Healthcare Utilization and Healthcare Associated Costs

CASE STUDY

CIHR Rare Disease Team Grant

NPI: Dr. Reshma Amin (Sick Kids)

Acute Healthcare Service Utilization Mortality Health-related Quality of Life Out of pocket costs Total Healthcare Service Utilization Publicly Funded

Publicly Funded Healthcare Costs

MAKE THINGS HARDER

DMP PROCESS

Where to Start?

72 team members

Clinicians, patient organizations, patient partners, community guiding circle

Statistics Canada, CIHI, Provincial health authorities

Non-member collaborators

CDA, other Canadian registries, RWE4decisions, TREAT-NMD

Where to Start? Process

ENGAGE

DMP

- 1. Data collection and storage
 - 1. Collect
 - 2. Generate
 - 3. Link (SDLE, income, claims data)
 - 4. Data protection
 - 5. Data management
 - a) Context of Indigenous people
- 2. Ethics and legal compliance, access
- 3. Data storage technical and preservation
- 4. Data sharing
 - a) Context of Indigenous people
 - b) Sensitive data
- 5. Data standards and international alignment

Thanks!

Data Management Plans for Clinical Genomics Research

Trevor Pugh, PhD, FACMG

Canada Research Chair in Translational Genomics Senior Scientist, Princess Margaret Cancer Centre Director, Genomics, Ontario Institute for Cancer Research Professor, Dept. of Medical Biophysics, University of Toronto trevor.pugh@utoronto.ca

My Perspective

Scientific Director of the Princess Margaret Genomics Centre (www.pmgenomics.ca) → basic research core

Medical Director of the OICR Genomics Program (<u>https://genomics.oicr.on.ca</u>) \rightarrow translational/clinical research core

Principal investigator using genomics to understand which cancer patients respond to treatment, when, & why (<u>www.pughlab.org</u>)

Our Goal: To enable reuse and integration of clinical and genomic data to answer new scientific questions

	Portal	Data Sets V	/eb.API R/	MATLAB Tutorials/V	Vebinars FAQ N	lews Visua	lize Your Da	ta About						PROJECTGE	
ENIE Cohor ENIE v9.1-put	rt v9.1-public No												Click	gene symbolis befow or ente	r here
Summary	Clinical Data	CN Segments							Selected: 1	02,884 pa	tients 110,7	04 sample	8 8 A A	Custom Selection - Cha	rts + Gro
1)	CancerTy	pe		2	Cancer Type Det	iiled		3	Sample	Type Deta	illed		(4) Age at Whi	ch Sequencing was Reporte	d
			Freq *	e			Freq *	0				Freq *	U.		
Non-Small	Cell Lung Cancer	16,667	9 15.1%	Lung Adenoca	rcinoma	12,926	11.7%	Primary	tumor		63,210	57.1%	1888		
Breast Cancer		12,72	\$ 11.5%	Breast Invasive	est Invasive Ductal Carcino 📄 8,106 7.3%		Metastasis site unspecified 🔅 28,206 25.5%			\$888		-			
Colorectal Cancer		11,015	9 10.0%	Colon Adenoc	arcinoma	6,386	5.8%	E Distant d	irgan metastasia	netastasis 🔅 5,359		4.8%	2000 4 20 20 20 20 20 20 20 20 20 20 20 20 20		
Glioma 🖂		6,749	6.1%	Prostale Adenocarcinoma		3,913	3.5%	Not applicable or hematologic 2 4,5			4,363	3.9%	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
Melanoma		4,503	4,1%	Pancreatic Ade	inocarcinoma	3,706	3.3%	Not Colle	ected		3,394	3.1%			30
Pancreatic Cancer		4,411	4.0%	High-Grade Se	rous Ovarian C	2,465	2.2%	Not othe	rwise specified		3.091	2.8%	6	Sex	
Ovarian Cancer		0 4,208	3.8%	Colorectal Ade	nocarcinoma	2,377	2.1%	E Lymph n	ode metastasis		1,630	1.5%	9		Freq *
Prostate Cancer		4,010	3.6%	📕 Bladder Urothe	stal Carcinoma	2,043	1.8%	E Local ree	currence		1,451	1.3%	Female	55,963	54.4%
Endometrial Cancer		3,400	3.1%	Glioblastoma Multiforme		1,905	1.7%				Male	46,741	45.4%		
Soft Tissue Sarcoma		3,266	3.0%	Rectal Adenocarcinoma		1,841	1.7%						Unknown	180	0.2%
Cancer of Unknown Primary Search		3,235	2.9%	Invasive Breast Carcinoma C 1,819		1.6%	Search				Seamh	1			
a) Muta	ted Genes (110704)	profiled samp	les)	(8)Structural Va	riant Genes (1107	04 profiled s	amples)	\overline{O}	CNA Genes (79	820 profile	ed samples)		6	Primary Race	
Gene	# Mut		Freq *	Gene	# SV		Freq *	Gene	Cytoband	CNA		Freq *	9		Freq *
P53	47,070	43,195	5 39.4%	TACC3	172	0 165	7.6%	LAMB3	1q32.2	AMP	531	22.0%	Mhite 📰	2 74,377	72.3%
RAS	17,016	16,750	15.1%	EML4	314	310	7.5%	RYR2	1q43	AMP	519	21.5%	Unknown	7,516	7.3%
1K3CA	14,941	13.003	12.1%	KIAA1549	221	219	7,4%	USH2A	1q41	AMP	517	21.4%	Not collected	7,080	6.9%
IUC16	376	333	11.9%	FLI1	162	159	4.2%	COL22A1	8q24.23-q	AMP	468	19.4%	Black	5,866	5.7%
APC	15,016	10,665	10.1%	KIF5B	124	0 113	3.7%	DCAF4L2	8q21.3	AMP	- 416	17.2%	🔳 Asian	5,220	5.1%
OL7A1	1,587	1,312	10.0%	CCDC6	67	85	3.4%	STMN2	8q21.13	AMP	389	16.1%	III Other	2,547	2.5%
AP1B	1,934	1,136	9.9%	PHF1	9	9	2.0%	TG	8q24.22	AMP	- 499	14.0%	Native American	164	0.2%
MT2D	11,764	8.529	9.8%	AP1B1	8	8	1.8%	PDE4DIP	1021.2	AMP	325	13.2%	Pacific Islander	D 66	<0.1%
ERT	9,095	8,025	9.7%	CD74	87	0 81	1.8%	CDKN2A	9p21.3	HOM	6,633	8.3%	I NA	2 48	<0.1%
AID1A	9,406	7,502	8.4%	NFIB	41	E 41	1.7%	BCAS3	17q23.2	AMP	199	8.2%			
CDH23	131	0 114	7.8%	SHBG	7	7 7	1,6%	SHANK2	11q13.3-q	AMP	0 192	7.9%			
Search.				Search				Search					Seatch		

"AACR Project GENIE: 100,000 Cases and Beyond". AACR Project GENIE Consortium, Genomics and Analysis Working Group. *Cancer Discovery* (2022) 12 (9): 2044–2057.

Data from >110,000 tumors from >100,000 people treated at 19 cancer centers worldwide

Predicted enrollment on genome-guided clinical trials

Discovered driver alterations in rare tumors

Identified cancer types without actionable mutations that could benefit from whole genome sequencing

Primary, Secondary, and Tertiary data require different systems that reflect identifiability of underlying data

Primary: Controlled access databases for original genome sequencing reads (EGA and dbGAP)

https://ega-archive.org/datasets/EGAD00001011312

Description of the study, cancer types, timing of collection, and genomics technology (cfMeDIP-seq)

Access policy, any over-arching studies or related data sets, number and size of files for download

Governance details including data access agreement and information on the Data Access Committee who will evaluate the request

Similar information for NIH-funded data sets at https://dbgap.ncbi.nlm.nih.gov

Secondary: Open access databases for open sharing and searching (e.g. cBioPortal Patient View)

Data from Yang et al. Nat Commun. 2021 Aug 26;12(1):5137. cBioPortal accessible at www.cbioportal.org

Tertiary: Code repositories for reproduction of correlative analysis and figures (github and CodeOcean)

genomics

Demo

Anatomy of a brief data management plan for genomics research

This project will generate comprehensive genomic and methylation profiles from a substantial number of tumour tissues, blood cells, and blood cell-free DNA collecting from consented participants on the clinical trial who have consented to data sharing. These data will be processed to produce primary (alignments), secondary (variant calls), and tertiary (interpretative analysis) data that will be shared through multiple data sharing platforms within the bounds of patient consent for use of data. Clinical data will follow the clinical data standard of the Marathon of Hope Cancer Centres Network (www.marathonofhopecancercentres.ca). *Primary sequence alignments* (i.e. bam files) for genomic and methylation tests of specimens from patients who have consented to genomic data sharing will be uploaded to the European Genome-Phenome Archive (EGA), a controlled access database. The Data Access Committee (DAC) for these data will be the UHN DAC¹⁹ (EGAC00001000912) to ensure that data requests are compliance with patient consent use of the samples. EGA repository records will become publicly viewable and open for requests when a manuscript is accepted for publication and representing a cohesive, quality-controlled data set. **Secondary variant calls** (mutations, copy number variants, structural variants, and methylation calls) will be shared through three avenues: 1) EGA alongside the primary sequence alignments, 2) Supplementary data tables of published manuscripts, and 3) cBioPortal.org, a publicly-accessible web-based system for searching clinical and genomic data. These call files will follow standardized formats defined by the Global Alliance for Genomics and Health (GA4GH). Clinical data and copies of the genomic variant calls will also be made available as cBioPortal upload files (https://docs.cbioportal.org/file-formats/) to facilitate reuse by other studies. Tertiary *interpretive results* will take the form of published manuscripts, machine learning models, and a white paper for uptake by decision makers outlining potential clinical use of these assays in the context of liver transplantation for hepatocellular carcinoma. Software and code to reproduce our work will be released through open-source repositories on the Pugh Lab github site (https://github.com/pughlab). Results of our research will be reported in peer-reviewed publications in open access journals.

Introduce types and sources of data and the Primary, Secondary, Tertiary concept

Primary management with specific data standard formats and governance for gaining controlled access

Secondary management with specific repositories, URLs, and data standards

Tertiary data types including data systems to enable reproducible research

Commitment to open access

Denise Mak, PhD

Director, Data Science & Innovation

About GEMINI

- Established in 2015 to collect routinely-generated clinical and administrative data from seven (7) University of Toronto-affiliated hospitals for research and quality improvement
- Today, GEMINI currently contains data on >2 million hospitalizations from >30 Ontario hospitals, representing ~60% of all medical and ICU beds in the province
- Used by >200 scientists & students and >100 active projects to study patient care, outcomes, resource utilization and more

GEMINI Data Platform

- Electronic in-hospital patient data
- Secure data transfer to Unity Health Toronto
- Data processing pipeline (deidentification, integration, standardized, etc)
- High performance computing environment at Unity Health Toronto

- Deidentified researchready data
- High performance computing environment at HPC4Health (Sick Kids)

GEMINI's Data Management Practices

- REB study protocols
- Data sharing agreements
- Data Governance Policy
- Privacy Impact Assessment
- Security Risk Assessment
- Data Dictionary for Research Use
- Internal SOPs (Data Processing, Information Security, etc)

Alignment with DMP Components

GEMINI	Data Collection	Documentation and Metadata	Storage and Backup	Preservation	Sharing and Reuse	Responsibilities and Resources	Ethics and Legal Compliance
REB study protocols							
Data sharing agreements							
Data Governance Policy							
Privacy Impact Assessment							
Security Risk Assessment							
Data Dictionary for Research Use							
Internal SOPs							

DMP Components (based on Alliance's Template)

Data Management Practices

https://www.tibco.com/glossary/what-is-data-management

Benefits and Challenges with DMPs

- Be proactive about Data Management
- Align and unify existing approvals, policies, and other documents
- Improve understanding and appreciation of data workflow
- Be too prescriptive with templates
- Find appropriate and relevant technical resources
- Initiate DMPs for new projects

Panel Discussion

UNIVERSITY OF TORONTO & Innovation Support

Upcoming Event

October 16th @ 2:30 pm – 4 pm

October 23rd @ 2:30 pm – 4 pm

- A link to the recording, presenter slides, and feedback form will be sent out after the session
- Follow-up questions can be addressed to <u>cris@utoronto.ca</u>

Dr. Victoria Hodgkinson

Dr. Trevor Pugh

Dr. Denise Mak

